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Multiparametric Electromagnetic Inversion of 3-D
Biaxial Anisotropic Objects Embedded in Layered

Uniaxial Media Using VBIM Enhanced by
Structural Consistency Constraint
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Abstract— This article presents the 3-D inversion of biaxial
anisotropic objects embedded in layered uniaxial media by the
variational Born iterative method (VBIM). Although previously
only the isotropic complex permittivity profile was reconstructed,
here we retrieve all the six diagonal anisotropic permittivity
and conductivity parameters simultaneously. In the forward
model, the stabilized biconjugate gradient fast Fourier transform
(BCGS-FFT) method is used to solve the volume electric field
integral equation (EFIE). In the inversion model, VBIM is
employed to minimize the cost function. In order to improve
the inversion results, we propose a novel structural consistency
constraint (SCC) applied to VBIM. The SCC is based on the
Monte Carlo method and reduces the computational domain
in the Born iteration. The major new contribution of this
work is to combine the deterministic inversion algorithm VBIM
with the stochastic Monte Carlo method to reconstruct all the
diagonal anisotropic parameters of the scatterers. Several typical
numerical models are simulated, and the results validate the
efficiency, antinoise ability as well as the accuracy of VBIM-SCC
for reconstructing 3-D biaxial anisotropic objects embedded in
multilayered uniaxial media.

Index Terms— Biaxial anisotropic, layered uniaxial media,
Monte Carlo method, structural consistency constraint (SCC),
variational Born iterative method (VBIM).

I. INTRODUCTION

ELECTROMAGNETIC (EM) inversion uses the measured
EM fields scattered by the unknown objects embedded

in a region of interest to infer their structures and/or dielec-
tric parameters. Various EM inversion techniques are widely
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adopted in civilian as well as military applications [1]–[5].
Most inversion is carried out in an isotropic background
medium. However, in many geophysical exploration scenarios
such as down-hole well-logging [6], magnetotellurics [7], and
hydraulic fracture mapping [8], the anisotropy of the back-
ground media must be taken into account. One common model
is the transverse isotropy (or uniaxial anisotropy). Therefore,
it is desirable to develop an anisotropic EM inversion algo-
rithm for scatterers embedded in layered uniaxial media and
explore its potential applications.

Since inverse scattering problems are usually nonlinear and
ill-posed, the accuracy, stability, and efficiency are three core
topics in EM inversion. To address these issues, researchers
have done lots of research for different solutions and achieved
good results. The inverse problems are solved either by the
linear approximation methods [9]–[11] or by nonlinear itera-
tive methods. Due to the multiple scattering among scatterers,
a linear method works only for a weak EM scattering scenario.
Several nonlinear iterative methods have been developed to
deal with the strong scattering scenario. One method is to
transform the nonlinear relationship between the scattered field
and the model dielectric parameters into an optimization prob-
lem, such as the contrast source inversion (CSI) [12]–[14] and
subspace-based optimization method (SOM) [15]–[17]. These
kinds of methods generally require good initial values [18].

Another nonlinear iterative method requires forward compu-
tation in each iteration. The total electric field in the inversion
domain is updated in the forward computation by assuming
the model parameters are known. In the inversion, the model
parameters are updated by minimizing the difference (misfit)
between the measured and simulated scattered field based on
the reconstructed parameters. The initial values of model para-
meters are guessed to start the iteration. This kind of methods
includes the Born iterative method (BIM) [2], [19], distorted
BIM (DBIM) [20]–[23], and variational BIM (VBIM) [1],
[24], [25]. Once the total fields are updated by the forward
solver, iterative methods such as conjugate gradient (CG) [26]
or Gauss–Newton inversion (GNI) [27] can be used to find
the optimized model parameters. BIM was first developed
by Wang and Chew [19] to reconstruct the 2-D permittivity
profile of an inhomogeneous medium. They then proposed
the DBIM [20] which has a faster convergence speed than
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BIM although the stability of the iterative process is not as
good as that of the BIM. The DBIM method is later widely
used in inversion problems. For example, Yu et al. [22] used
the DBIM to perform image reconstruction of 3-D dielectric
targets from multifrequency experimental data. To avoid repet-
itive computation of the Green’s function in each iteration of
the DBIM, Nie et al. [24] developed the 2-D VBIM which
can be switched to BIM conveniently. Zhang and Liu [25]
developed the VBIM in the simultaneous reconstruction of
permittivity and permeability contrasts in 3-D isotropic media.
Due to the faster convergence compared with the BIM and
less computation cost compared with DBIM, the VBIM is
employed in this article.

There are several previous research works related to the
anisotropic inversion. For example, the anisotropic conduc-
tivity in each layer was retrieved in [7]. The inversion
of 2-D uniaxial anisotropic scatterers embedded in homoge-
neous background media by the SOM was given in [16] and
[17]. Inversion for multiple small anisotropic spheres by the
multiple signal classification (MUSIC) method was presented
in [28]. In this article, we present the first multiparameteric
inversion of 3-D biaxial anisotropic dielectric objects embed-
ded in layered uniaxial media by VBIM. The optical axes of
both the scatterers and the background medium are assumed
perpendicular to the layer interface. Meanwhile, the scatterers
and the background medium are nonmagnetic and lossy, and
thus, there are totally six parameters to be reconstructed for
both the permittivity and conductivity. Uniquely solving for
so many parameters is a challenging task. Noting that these
six parameters usually share the same geometry structure,
we develop a structural consistency constraint (SCC) algorithm
based on the Monte Carlo method to reduce the inversion
domain as well as the unknowns in the nonlinear inversion
iteration. In order to simultaneously invert for permittivity
and conductivity, we formulate the inversion data equation
by combining the real and imaginary parts together to form a
pure real equation, and the frequency information is integrated
into the Fréchet derivative matrix. Accordingly, the real and
imaginary parts of multifrequency scattered field data are also
separated and reunited to form the measured field vector. The
real form inversion data equations are solved by VBIM with
the SCC. And the 3-D biaxial anisotropic dielectric objects
are reconstructed.

The organization of this article is as follows. In Section II,
the detailed description of the theory is presented. In the
forward model, the scattered field and the total field are calcu-
lated for known dielectric model parameters using the bicon-
jugate gradient fast Fourier transform (BCGS-FFT) method.
In the inversion model, the inversion data equations in real
forms are solved by VBIM. Finally, the SCC algorithm is
discussed in detail. In Section III, three numerical models
are simulated. In the first model, the inversion results as
well as computation efficiency are compared for the VBIM
with and without SCC applied. In the following two models,
irregular as well as multiple objects are reconstructed by the
proposed VBIM-SCC algorithm when the noise of different
levels is added to the synthetic data. In Section IV, conclusions
are drawn.

II. METHODS

The objective of this article is to invert for the 3-D biaxial
anisotropic objects completely embedded in the mth uniaxial
medium layer with the optical axis in the z-direction. The
objects are not allowed to be placed across layer boundaries.
The typical configuration of scattering and inverse scattering
can be referred to Fig. 1 in [29] and [30]. Each layer of
the background medium has independent permittivity and
conductivity but the same permeability as that of free space
μ0. The relative permittivity and conductivity tensors of the
i th layer are written as

ε
i
b = diag
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εi

xb, ε
i
xb, ε

i
zb
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where the subscript b denotes the background. The relative
complex permittivity tensor of the i th layer is expressed as

ε
i
b = ε

i
b + σ

i
b

jωε0
. (2)

The relative permittivity and conductivity tensors of the scat-
terer are written as

εs = diag{εxs, εys, εzs}, σ s = diag{σxs, σys, σzs}. (3)

The relative complex tensor permittivity of the scatterer is
defined as

εs = εs + σ s

jωε0
(4)

where ω is the operating angular frequency. The six parameters
in (3) are reconstructed in this article.

A. Forward Model

According to the EM scattering theory [31], [32], the scat-
tered electric field Esct and magnetic field Hsct are equal to
the fields radiated by the unknown equivalent electric current
source Jeq

Jeq(r) = jωε0
(
εs(r) − ε

m
b

)
Etot(r) (5)

in the background medium where r is the position vector in the
3-D space. Etot is the total field inside the object embedded in
the mth layer, and it is obtained by solving the volume electric
field integral equation (EFIE) [30], [33]

Etot(r) = Einc(r) − jω

(
I + 1

k2
0ε

m
xb

∇∇·
)

Am(r) (6)

where the superscript m stands for the mth layer, k0 =
ω

√
ε0μ0 is the wavenumber in the free space, and A is the

magnetic vector potential in the layered uniaxial medium [33].
The discretized matrix form of (6) is solved by the BCGS-FFT
method, and the details can be found in [30]. The scattered
electric field Esct and magnetic field Hsct can be written as

Esct(r) = jωε0

∫
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m
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)
Etot(r′)dr′ (7)
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where G
m

EJ and G
m

HJ are, respectively, the mth layer dyadic
Green’s functions for the electric field and magnetic field in
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the layered uniaxial medium and can be found in [33]. They
include the contributions from the direct EM wave propagation
from the source and those from the multiple reflected and
transmitted EM waves in the layer boundaries. This makes the
inverse scattering problem in multilayered media considerably
more complicated than that in a homogeneous background.

In the forward problem, the scatterer parameter εs is
known, and Etot is solved from EFIE (6) by the BCGS-FFT,
and integrals in (7) and (8) are performed to obtain the
Esct and Hsct.

B. Inversion Model

In the inversion model, the scattered fields Esct and Hsct can
be measured at some discrete locations and the tensor εs is the
unknown to be solved. We assume that MT transmitters, MR

receivers, and MF operation frequencies are used to collect the
scattered fields. The rectangular inversion domain is divided
into N = Nx × Ny × Nz cells, and each cell has six unknowns
(εxs , εys , εzs , σxs , σys , and σzs) to be solved for the biaxial
objects. So, the total unknown number is 6 N . By virtue of (7)
and (8), the data equation with the unknown εs for the i th
frequency can be discretized as

L′(ωi ) = A′(ωi )x(ωi ) (9)

where ωi is the i th angular frequency. L′(ωi ) is a 6 MT MR

column vector containing the measured scattered data whose
column elements are expressed as

L′(ωi ) =
[

Esct(ri R , riT , ωi )
η0Hsct(ri R , riT , ωi )

]
. (10)

Here, η0 is the intrinsic impedance of air, and A′(ωi )x(ωi )
represents the reconstructed scattered field. A′(ωi ) is a
6 MT MR × 3N matrix, whose elements for the kth cell are
given as

A′(ωi ) = jωiε0�V

⎡
⎣ G

m
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k, ωi )
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m
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(11)

The x(ωi ) is the unknown to be solved for biaxial objects,
whose elements for each cell are given as

x(ωi ) =

⎡
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. (12)

Obviously, the unknown x(ωi ) is different for different oper-
ation frequencies. Therefore, the data equation (9) is refor-
mulated as the real equation with the same unknown for all
operation frequencies, whose expression is rewritten as

L = Ay (13)

where L is the combination of the real and imaginary parts
of the measured fields for all operation frequencies. And the

total number of elements in L is M = 12MT MR MF . It is
evaluated by

L(ωi ) =
[

Re(L′(ωi ))
Im(L′(ωi ))

]
(14)

for the i th frequency. A is an M ×6N matrix, whose elements
for each frequency are

A(ωi ) =
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The vector y has 6N unknowns, whose elements for each
cell are

y = [
εxs − εm

xb, εys − εm
xb, εzs − εm

zb,

σxs − σm
xb, σys − σm

xb, σzs − σm
zb

]T (16)

where T denotes the matrix transpose. In order to solve the
data equation (13) by VBIM, we normalize the elements
of (16) by the corresponding background parameters to ensure
that they have the same order of magnitude. The new form of
y is the contrast and is given as

y′ = [
εxs

/
εm

xb − 1, εys
/
εm

xb − 1, εzs
/
εm

zb − 1

σxs
/
σm
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/
σm

zb − 1
]T

. (17)

The matrix A is modified accordingly and denoted as B to
keep the data equation (13) correct. By taking the variation of
the data equation (13) with respect to y′, we obtain

δLn ∼= Bnδy′
n (18)

where δLn is the difference between the measured data and
the reconstructed data in the nth iteration. Bn can be acquired
from (11) and (15). As the initial value of unknown y′, y′

0 is
set to zero. And δy′

n+1 at the (n + 1)th iteration is defined as

δy′
n+1 = y′

n+1 − y′
n . (19)

The cost function with the regularization term in the (n +1)th
iteration step is defined as

F(δy′
n+1) = ‖δLn − Bnδy′

n+1‖2

‖δLn‖2 + γ 2 ‖δy′
n+1‖2

‖δy′
n‖2 (20)

where γ is the regularization factor. ‖·‖ is the L2 norm and
‖δy′

n+1‖2
/‖δy′

n‖2 is a self-adapting regularization coefficient
which can make the process of inversion more stable [1]. The
minimization of the cost function is equivalent to solving the
following equation [34]:(

BT
n Bn + γ 2 ‖δLn‖2

‖δy′
n‖2 I

)
δy′

n+1 = BT
n δLn . (21)

This equation can be efficiently solved by the CG method
[35]. In addition, in the iteration process, a nonlinear transform
is used to constrain the reconstructed parameters within a
reasonable range to avoid nonphysical values [2], [36].
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Fig. 1. Flowchart of the VBIM without and with SCC based on Monte Carlo
method.

C. SCC Algorithm Based on the Monte Carlo Method

Because the unknown geometry structures of the scatterers
usually do not occupy the whole inversion domain, the recon-
struction region can be decomposed into scatterer subregions
and the remaining background subregion. The dielectric para-
meters of the background subregion are known. Therefore,
the unknowns in this subregion are redundant for the solution
of (21) since they have no contribution to the scattered field.
If the discretized cells for these redundant unknowns can be
effectively removed, the inversion domain may be compressed
as small as the scatterers. This can improve the accuracy of
the reconstructed parameters and save CPU time and computer
memory. Therefore, we develop the SCC algorithm based
on the Monte Carlo method to determine whether a certain
discretized cell in the inversion domain is the “background”
or the “scatterer.” If it is judged as the “background,” the
unknowns for this cell will be discarded in the next VBIM
iteration.

Solving an inverse problem is using some measurements of
the observable parameters to infer the true values of model
parameters, which provide the parameter distribution over
the inversion space [37]. Due to the restriction of the data
equation (21), the reconstructed parameters are pseudorandom.
Six model parameters are obtained after each iteration and
different parameters in a discretized cell probably show dif-
ferent structures (“background” or “scatterer”), although the
ground truth is that they usually share the same structure.
Now let us assume the structure in each cell obeys the
Bernoulli distribution (0 for “background,” 1 for “scatterer”).
Six reconstructed parameters are six samples. We adopt the
Monte Carlo method and the point estimation, i.e., use the
sample mean value to replace the probability of the “scatterer.”
If this probability is smaller than a prescribed threshold,
the cell structure is treated as “background.” The unknowns
in this cell and the corresponding columns in the matrix Bn

in (18) will be removed in the next iteration.
The flowchart of the VBIM with and without SCC is

shown in Fig. 1. The left panel is the traditional VBIM
algorithm given in [24]. The RRE denotes the relative residual

error between the measured scattered data and the calculated
scattered data

RRE = ‖L − Ln‖
‖L‖ . (22)

PreC in Fig. 1 denotes the prescribed threshold for the stop
condition of VBIM. The flowchart in the dotted box is the
SCC algorithm which is composed of two parts. The struc-
ture distribution is obtained by normalizing the reconstructed
parameters yn for each cell, and it is defined as

sn[k] = abs(yn[k])
max(abs(yn[k]) (23)

for the kth retrieved parameter (sample) in the nth iteration.
The max in the denominator represents the maximum value
in all the discretized cells. In virtue of the definition of yn
in (16), sn can be treated as the probability of “scatterer”
of a certain discretized cell. As shown in Fig. 1, in the first
part, only six samples in each iteration are used for the point
estimation for the first N1 iterations. This can preliminarily
determine the locations and sizes of the objects and remove the
most redundant background cells. In the second part, the point
estimation is performed after every N2 iterations. And the
samples are increased to 6N2 to improve the accuracy of
the point estimation. The sample space for the mth point
estimation is denoted as Sm with the size of K . Therefore,
the probability of “scatterer” for the mth point estimation Pm

is calculated by the arithmetic mean of Sm

Pm =
∑K

k=1 Sm

K
, Sm =

⎧⎪⎨
⎪⎩

sn[k], m ≤ N1
N2∑

n1=1

sn+n1 [k], m > N1.
(24)

In Fig. 1, pm[i ] is the element of Pm for the i th cell. PreT is
the prescribed threshold for the point estimation. Dn denotes
the new inversion domain for the next iteration in which the
parameters are not changed. Db denotes the remaining domain
in which all the cells are mandatorily set as “background.” Dn

and Db together form the whole inversion domain. In the next
iteration, the total field Etot is obtained for the whole inversion
domain, but the Fréchet derivative matrix is assembled only
for Dn .

From the above discussions, we know that the SCC algo-
rithm is implemented after each VBIM iteration or several
VBIM iterations and only used to reconstruct the structures of
the objects. The implementation is the statistical processing
of results from the CG solver. Although we only combine
the SCC with VBIM in this article, it not only works for
VBIM. Actually, it can be easily combined with any voxel-
based deterministic inversion algorithms such as SOM or CSI
as long as the sampling space is large enough.

III. NUMERICAL RESULTS

In this section, three numerical models are used to demon-
strate the effectiveness of the inversion method. The first case
is only for methodological validation, and the other two cases
are implemented to mimic the actual applications of through-
the-wall imaging and cross-well measurements, respectively.
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Fig. 2. Configuration of the inversion model with a cuboid scatterer with
the dimensions of 0.4 m × 0.22 m × 0.4 m embedded in the bottom layer.

For convenience, all transmitters are unit electric dipoles
polarized in the direction of (1, 1, 1). The initial values
of the unknowns are taken as the background parameters.
In the previous work [1], [38], γ 2 is usually larger than 10−3.
Numerical simulations indicate that γ = 0.05 is an appropriate
value in this work. Therefore, we set γ 2 = 0.0025 in all
the numerical cases. The parameters in VBIM-SCC are set
as PreC = 5 × 10−4, N1 = 4, and N2 = 5. The PreC
is chosen empirically since the previous work [25] shows that
the reconstructed profiles are good enough when the threshold
PreC < 10−3. The selection of PreT is referred to as a
probability value following the normal distribution outside
one variance and set to 15%. This is an appropriate value
and is verified by all the numerical examples in this article.
These configurations will not be repeated for each case in the
following. The measured scattered data are synthesized by the
forward BCGS-FFT solver with a finer mesh.

A. Cuboid Object Embedded in the Bottom Layer

A cuboid biaxial anisotropic object with a size of 0.4 m ×
0.22 m × 0.4 m is embedded in the bottom layer, as shown
in Fig. 2. The center of the object is located at (0,−0.01, 0.4)
m. The top layer is air. The relative permittivity and conduc-
tivity tensors are

εs = diag{4, 3.5, 3}, σ s = diag{3.5, 4, 2.5} mS/m (25)

for the scatterer and

ε
2
b = diag{2, 2, 1.5}, σ

2
b = diag{2, 2, 1.5} mS/m (26)

for the bottom layer. The inversion domain enclosing the
object has a dimension of 0.6 m × 0.6 m × 0.6 m, and its
center is located at (0, 0, 0.4) m. The whole region is divided
into 303 cells. The size of each cell is �x = �y =
�z = 0.02 m. The spatial sampling density of the dis-
cretization is around 50 points per wavelength (PPW) for the
largest frequency and the largest relative permittivity value
of the scatterer. We use this high PPW value only for the
purpose of high reconstruction resolution. So, there are totally
162 000 unknowns to reconstruct. The transmitter array with
16 unit electric dipoles are uniformly located from 1.5 to

Fig. 3. Reconstructed 3-D profiles of the cuboid object by VBIM without
SCC. (a)–(c) Relative permittivity and (d)–(f) conductivity.

Fig. 4. 2-D slices of reconstructed results for the cuboid object by VBIM
without SCC. (a) and (d) yz slices at x = 0 for reconstructed parameters
of εx and σx , respectively. (b) and (e) xz slices at y = 0 for reconstructed
parameters of εy and σy , respectively. (c) and (f) xy slices at z = 0.4 m for
reconstructed parameters of εz and σz, respectively. The dotted boxes denote
the true location and shape of the object.

1.5 m at the z = 0.1 m plane. We choose five operating
frequencies from 100 to 140 MHz with a step of 10 MHz.
The scattered fields are collected by the receiver array with
36 dipoles uniformly located in a 1.8 m × 1.8 m square plane
at z = 0.05 m. Thus, there are 34 560 data equations.

First, we perform the inversion by VBIM without SCC.
After 35 iterations, the VBIM terminates with the RRE =
4.61×104. The reconstructed 3-D profiles are shown in Fig. 3
in which (a)–(c) represent the relative permittivity profiles and
(d)–(f) represent the conductivity profiles. The 2-D slices are
shown in Fig. 4. The yz slices at x = 0 for εx and σx are shown
in Fig. 4(a) and (d), respectively. The 2-D xz slices at y = 0
and xy slices at y = 0.4 are shown in other four subfigures.
The true location and shape of the object are shown in the
dotted boxes. Compared with the true model, the locations are
basically consistent, but the shapes cannot be clearly identified.
The smooth edges of the reconstructed scatterers are caused
by the L2 norm Tikhonov-type regularization used in the cost
function (20). And the retrieved model parameter values are
roughly close to the true values.

For the same configuration, we perform the inversion by
VBIM-SCC. The procedure terminates after 16 iterations with
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Fig. 5. Reconstructed 3-D profiles of the cuboid object by VBIM-SCC.
(a)–(c) Relative permittivity and (d)–(f) Conductivity.

Fig. 6. 2-D slices of reconstructed results for the cuboid object by VBIM-
SCC. (a) and (d) yz slices at x = 0 for reconstructed parameters of εx and σx ,
respectively. (b) and (e) xz slices at y = 0 for reconstructed parameters of εy
and σy , respectively. (c) and (f) xy slices at z = 0.4 m for the reconstructed
parameters of εz and σz, respectively.

RRE = 4.45×10−4. The results of 3-D profiles and 2-D slices
are shown in Figs. 5 and 6, respectively. The slices shown
in Fig. 6 are at the same locations as those in Fig. 4. Compared
with the results of VBIM without SCC, both the location as
well as the shape and the dielectric parameter values of the
object are better reconstructed by the VBIM-SCC. We can see
the existence of the trailing phenomenon at the bottom of the
object by two methods. This is because all transmitters and
receivers are placed on the top layer and the information at
the bottom of the scatterer is not well reflected. Fortunately,
VBIM-SCC mitigates the trailing phenomenon, but it cannot
completely eliminate it. In order to evaluate the performance
of inversion quantitatively, we define the model misfit as

Errmodel = ‖mdR − mdT ‖
‖mdT ‖ (27)

where mdT is the true model parameter, and mdR is the
reconstructed parameter. The model misfits for these two
different VBIM schemes when iterations terminate are listed
in Table I. VBIM-SCC has obviously lower model misfits for
all retrieved parameters compared with VBIM without SCC.

Fig. 7. Converging process of VBIM-SCC. (a) Ratio of unknowns after each
point estimation. (b) RRE variations with VBIM iterations.

Fig. 8. 2-D slices of reconstructed results for different χar values listed
in Table II by VBIM-SCC. (a) εx in Group 1, (b) εy in Group 2, (c) εz in
Group 3, (d) σx in Group 4, (e) σy in Group 5, and (f) σz in Group 6. The
dotted boxes denote the true location and shape of the object.

TABLE I

MODEL MISFITS FOR VBIM WITH AND WITHOUT SCC

When VBIM-SCC terminates, there are only 33 672 unknowns
(5612 cells) for last point estimation which is far less than
the total 162 000 unknowns (27 000 cells) in each iteration by
VBIM without SCC. Fig. 7(a) shows the ratio of the remaining
unknowns to the total unknowns after each point estimation,
and Fig. 7(b) shows the RRE at each iteration for two methods.
We can see that the number of unknowns is dramatically
reduced by more than 40% after the first point estimation
and then decreases steadily. This decrease not only helps save
the computation time and memory but also lowers the total
iteration steps, as shown in Fig. 7(b). Actually, it takes about
2 h to complete the inversion by VBIM-SCC, but 24 h by
VBIM without SCC on the same workstation.

In order to investigate the performance of VBIM-SCC for
different anisotropy, we define the degree of anisotropy of the
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Fig. 9. Configuration of the inversion model with a cross shape scatterer
embedded in the middle layer.

Fig. 10. 2-D slices of reconstructed results for the cross object in the first
scenario. (a) and (d) yz slices at x = 0 for εx and σx , respectively. (b) and
(e) xz slices at y = 0 for εy and σy , respectively. (c) and (f) xy slices at
z = 0 for εz and σz, respectively.

complex contrast as [39]

χar =
√∑MF

j=1

∑3
i=1 ‖χi (ω j ) − χave‖2

√
3 ∗ MF ‖χave‖ (28)

where χi (ω j ) with i = 1, 2, 3 are the diagonal elements
of the contrast tensor χ(ω j ) = εs(ω j )/εb(ω j ) − 1 for the
j th frequency of the total MF frequencies, and χave =
(
∑MF

j=1

∑3
i=1 χi (ω j ))/(3 ∗ MF ).

We then test the VBIM-SCC algorithm for six different
values of χar , and the parameters are listed in Table II.
One should note that we only change the anisotropic model

Fig. 11. 2-D slices of reconstructed results for the cross object in the second
scenario. (a) and (d) yz slices at x = 0 for εx and σx , respectively. (b) and
(e) xz slices at y = 0 for εy and σy , respectively. (c) and (f) xy slices at
z = 0 for εz and σz, respectively.

TABLE II

DIFFERENT DEGREES OF ANISOTROPY USED TO TEST VBIM-SCC

parameters of the scatterers and keep those of the background
medium the same as (26). The symbol M Fave in Table II
denotes the average model misfit of six reconstructed model
parameters while ITEs are the total iteration number when
VBIM-SCC terminates. The results show that as the degree
of anisotropy increases from Group 1 to Group 6, the model
misfit can roughly keep lower than 10% but more and
more VBIM iterations are required to reach the same stop
criterion. This means that the larger degree of anisotropy
leads to higher computation cost for VBIM-SCC although the
accuracy can be maintained. Fig. 8 shows the reconstructed
profiles for six groups of parameters listed in Table II. Note
only one parameter is displayed for one group. By com-
paring the results with those shown in Fig. 6, we can
see that VBIM-SCC can reconstruct the anisotropic model
parameters reliably even when the degree of anisotropy is
very large.

Finally, one should note that both the memory and compu-
tation time costs of SCC are negligible compared with those
of VBIM. This is because an iterative CG solver is used to
solve the matrix (21) in each VBIM iteration, but the SCC only
includes some arithmetical normalization or mean operations
as shown in (23) and (24).
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Fig. 12. Structure focusing processes in two different scenarios by VBIM-SCC are shown from left to right. The structure snapshots of (a)–(f) are taken in
the 1st, 3rd, 5th 7th, 9th, and the last point estimation for the first scenario and (g)–(l) are taken in the 1st, 3rd, 4th, 5th, 7th, and the last point estimation
for the second scenario.

B. Cross Shape Object Embedded in the Middle Layer

In this case, we investigate the reconstruction of a cross
shape object. As shown in Fig. 9, the top layer and the
bottom layer are air. A cross shape object is embedded in the
middle layer. The centers of both the object and the inversion
domain are located at the origin. The sizes of the object and
reconstruction region are shown in Fig. 9. The whole inversion
domain is divided into 56 × 20 × 56 cells and the size of
each cell is �x = �y = �z = 0.02 m. So, there are totally
376 320 unknowns to reconstruct. The relative permittivity and
conductivity tensors are given as

εs = diag{4, 3.5, 3}, σ s = diag{4, 4.5, 3.5} mS/m (29)

for the cross shape object, and

ε
2
b = diag{2, 2, 1.5}, σ

2
b = diag{2.5, 2.5, 2} mS/m (30)

for the middle layer.
We inspect the proposed VBIM-SCC for two scenarios.

In the first scenario, the cross-shape object is illuminated
by transmitter and receiver arrays placed on one side of the
inversion domain. In the second scenario, they are placed on
two sides. A 5 × 3 transmitter array and a 9 × 4 receiver
array are employed in the first scenario. The transmitters are
uniformly placed in a 2 m × 1.2 m rectangular area at the
z = −0.9 m plane. The receivers are uniformly placed in a
3.6 m × 1.8 m rectangular area at the z = −0.85 m plane.
In the second scenario, the transmitter array and the receiver
array are 3×3 and 4×4, respectively. However, two identical
transmitter arrays and receiver arrays are placed on both the
top and bottom layers. Their positions and spatial sizes are the
same as those in the first scenario. Four operation frequencies
from 100 to 160 MHz with the step of 20 MHz are chosen. The
numbers of data equations are the same for two scenarios. The
procedure of VBIM-SCC terminates after 51 iterations with
RRE = 4.73 × 10−4 in the first scenario and 31 iterations
with RRE = 4.69 × 10−4 in the second scenario. The 2-D

slices are shown in Fig. 10 for the first scenario and Fig. 11
for the second scenario, respectively. Also, the dotted boxes
show the true location and shape of the cross shape object.
Compared with the true cross shape model, we can see that
not only the position and shape of the object but also the model
parameters are better reconstructed in the second scenario.
Another interesting observation is the arc shape showing up at
the bottom of the reconstructed xz slices in the first scenario.
This phenomenon disappears in the second scenario. This is
similar to the trailing phenomenon discussed in the last case.
Since the transmitter and receiver arrays are placed only on
the top layer in the first scenario, the bottom information of
the cross-shape object is not well reflected. When the bottom
shape is distorted in the reconstruction, the top shape will
also become bad even when we place enough transmitters
and receivers in the top layer. The only way to improve
the reconstructed results is to increase the array aperture,
e.g., put the transmitter and receiver arrays in two sides
of the object. And this is illustrated by the results shown
in Fig. 11.

The main contribution of SCC is to constrain and accelerate
the focusing process of the reconstructed structures. Fig. 12
shows the focusing processes of the reconstructed structures
in two scenarios. Each snapshot represents the reconstructed
structure after a certain point estimation. Clearly, SCC works
better for the two-side illumination.

C. Three Objects Embedded in the Bottom Layer

Due to the L2 norm used in the cost function of VBIM,
the cubic scatterers tend to be reconstructed as spheres [40].
Fortunately, SCC can effectively improve this deficiency.
In this case, we inspect the inversion for multiple cubic
objects embedded in the bottom layer with different dielectric
parameters to mimic cross-well measurements. The top layer
is air. We put all the transmitters and receivers inside boreholes
in the bottom layer, and noise at different levels is added to
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Fig. 13. Cross-well model. The left part is the illustration of the model and
the right part is the location sketch of the boreholes in the xy-plane.

Fig. 14. Reconstructed 3-D profiles for three objects by VBIM-SCC.
(a)–(c) for the relative permittivity and (d)–(f) for the conductivity.

the simulated data. The inversion model is shown in Fig. 13.
In the left part, three rectangular objects with the dimension
of 0.4 m × 0.2 m × 0.2 m are investigated. The centers
of three objects are (0,−0.1, 0.25) m, (0, 0.1, 0.7) m and
(0,−0.1, 1.1) m, respectively. The relative permittivity and
conductivity tensors are given as

εs1 = diag{1.0, 3.5, 3.0}, σ s1 = diag{2, 2.5, 4} mS/m (31)

for the first and the third object, and

εs2 = diag{3.5, 1.0, 3.5}, σ s2 = diag{2.5, 2, 4} mS/m (32)

for the second object. The background model parameters of
the bottom layer are given as

ε
2
b = diag{2.0, 2.0, 1.5}, σ

2
b = diag{1, 1, 2} mS/m (33)

the same as those for the first case. The inversion domain
has the dimensions of 0.6 m × 0.6 m × 1.2 m and its
center is located at (0, 0, 0.7) m. The region is divided into

Fig. 15. 2-D slices of reconstructed results for three objects by VBIM-
SCC. (a) and (d) yz slices at x = 0 for reconstructed parameters of εx and
σx , respectively. (b) and (e) xz slices at y = −0.06 m for reconstructed
parameters of εy and σy , respectively. (c) and (f) xy slices at z = 0 for
reconstructed parameters of εz and σz, respectively.

Fig. 16. 3-D isosurface plots of the reconstructed shape. (a) Isosurface for
P6 = 15%. (b) Isosurface for P6 = 30%.

30 × 30 × 60 cells. The size of each cell is �x = �y =
�z = 0.02 m. Thus, there are 324 thousand unknowns to
solve. Seven receivers and three transmitters are placed in each
borehole. Eight boreholes are drilled around the reconstruction
region, and the locations are shown on the right panel of
Fig. 13. Five operation frequencies are chosen from 80 to
120 MHz with a step of 10 MHz.

After 17 iterations, the VBIM-SCC terminates with
RRE = 4.82 × 10−4. The reconstructed 3-D profiles of the
relative permittivity and conductivity are shown in Fig. 14.
The 2-D slices are shown in Fig. 15. We can see that not only
the locations and shapes but also the model parameter values
are all well reconstructed. And there are only 49 050 unknowns
(8175 cells) to invert for after the last point estimation.
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TABLE III

MISFITS FOR DIFFERENT LEVELS OF NOISE CONTAMINATION IN THE
CROSS-WELL MODEL OF THREE RECTANGULAR OBJECTS

Fig. 17. 2-D slices of reconstructed results for three objects when
SNR = 20 dB by VBIM-SCC. (a) and (d) yz slices at x = 0 for reconstructed
parameters of εx and σx , respectively. (b) and (e) xz slices at y = −0.06 m
for reconstructed parameters of εy and σy , respectively. (c) and (f) Are xy
slices at z = 0 for reconstructed parameters of εz and σz, respectively.

Because transmitters and receivers wrap the inversion domain,
the trailing phenomenon does not show up.

The point estimation is performed six times when the
17 iterations terminate. Fig. 16 shows the 3-D isosurface plots
of the reconstructed shapes for the last point estimation when
the inversion ends. The isosurface for P6 = PreT (15%) is
shown in (a) and for P6 = 30% is shown in (b) in Fig. 16.
In (a), it is observed that three scatterers are clearly separated
and their locations and shapes can be identified. Thus, the SCC
algorithm also has a good structural constraint for multiple
objects. When P6 = 30%, the isosurface becomes smoother
and closer to the true model than when P6 = 15%. The
constraint of structural consistency is relaxed to avoid deleting
the cell of “scatterer” by mistake.

To simulate realistic measurements and test the antinoise
ability of VBIM-SCC, we add the white Gaussian noise to
the simulated scattered field to form synthetic data. We set
the power signal-to-noise ratio (SNR) of the synthetic data
as 20, 30, and 40 dB, respectively. Thus, the ratios between
noise and the signal amplitudes are about 10%, 3.16%, and

1%, respectively. When RRE reduces to 11.33%, 3.63%, and
1.14% for SNR = 20, 30, and 40 dB, respectively, it remains
unchanged and VBIM-SCC inversion procedures terminate.
The 2-D slices of the reconstructed results for SNR = 20 dB
are shown in Fig. 17. The reconstructed objects are at the
same locations as those shown in Fig. 15. Although the shapes
are distorted to some extent, the multiple objects are clearly
distinguishable and the retrieved parameter values are close to
the true values. The reconstructed results for SNR = 30 and
40 dB are not shown, but the results are better than those for
SNR = 20 dB. We define the data misfit as

Errdata = ‖daR − daT ‖
‖daT ‖ (34)

where daT is the measured scattered field and daR is the
reconstructed scattered field. The data misfits and model mis-
fits for the noise-free model and noisy models are calculated
and listed in Table III. We can see that data misfits are
close to the amplitude SNR values, and model misfits for
SNR = 40 dB are close to those for the noise-free model.
Thus, the VBIM-SCC has a certain antinoise ability.

IV. CONCLUSION

In this article, we present the EM inversion of 3-D biaxial
anisotropic objects embedded in layered uniaxial media by
VBIM when the optical axes are all aligned with the direction
perpendicular to the layer interfaces. The data equation for
multifrequency measured fields is formulated and rewritten in
the real form. Thus, both permittivity and conductivity can
be reconstructed simultaneously. The SCC algorithm based on
the Monte Carlo method is developed to accelerate VBIM and
improve reconstructed results by reducing the reconstruction
region in each iteration.

Three numerical examples are simulated to validate the
performance of the proposed inversion method. The objects
in all three cases are well reconstructed by the VBIM-SCC
method. Compared with the VBIM without SCC, the VBIM-
SCC method saves both the computation time and memory
by reducing the reconstruction region in each iteration. Mean-
while, the quality of the reconstructed objects is obviously
improved, which is validated by the comparisons of model
misfits. When the apertures of the transmitter and receiver
arrays are increased, VBIM-SCC performs better. And this is
shown in the second numerical case. The inversion capability
of multiple objects with different dielectric parameters shows
the potential applications of our method in cross-well explo-
rations. The reconstruction at different noise levels shows that
the VBIM-SCC method has a certain antinoise ability.

For the first time, we combine the deterministic inversion
method VBIM with the stochastic Monte Carlo method.
Although this is the first attempt and only the numerical exam-
ples are presented to mimic the real-world measurement sce-
narios, the performance of the inversion is improved obviously
and its effectiveness is also validated. The proposed hybrid
VBIM-SCC provides a new way of solving the EM inverse
scattering problems. As we know, the EM inversion methods
fall into two categories. One is the deterministic inversion
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and the other one is the stochastic inversion. In the deter-
ministic inversion, the dimension of model parameters has no
restriction. This is specifically powerful for 3-D voxel-based
inversion, i.e., the model parameters in all discretized cells are
reconstructed simultaneously. However, iterative solvers, e.g.,
VBIM are easily trapped in local minima and the solution
is not necessarily the most optimized one since the inverse
scattering problems are usually underdetermined. By contrast,
the stochastic methods search the optimized solutions ran-
domly and can avoid being trapped into local minima. Unfor-
tunately, the dimension of unknowns is severely restricted,
which is problematic for the 3-D voxel-based inversion in
which the model parameters in all discretized cells must be
retrieved. The VBIM-SCC in this article is first utilizing the
Monte Carlo method to reconstruct the structures of scatterers
using the statistical data of model parameters in all discretized
cells. Consequently, the inversion domain is compressed and
the underdetermination of the inverse problem is mitigated.
This facilitates the deterministic solver to rapidly reach the
optimal solutions.

One should note that the SCC proposed in this article is
combined with VBIM, but it is not only limited to VBIM.
It can be easily combined with any voxel-based deterministic
inversion algorithms such as SOM or CSI as long as the
sampling space is large enough. The future work will be
focused on two aspects. One is the combination of the VBIM
with artificial intelligence technology such as deep learning
or a convolutional neural network. The other one is the
validation of the proposed hybrid method in the laboratory
experiments. Several issues must be considered. First, the EM
wave scattering by measurement instruments or laboratory
surroundings must be considered. Second, the transmitter
and receiver antenna arrays are not allowed to be uniquely
polarized. Versatile polarization is necessary since some com-
ponents of the anisotropic dielectric parameter tensors are
not sensitive to the change of vertical electric fields. Third,
the construction of the layered uniaxial background media
is not easy. One possible solution is to use thin isotropic
slabs stacked periodically. However, such an experiment is too
challenging at the current stage and will be left as our future
research work.
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